The research group has long been committed to developing new characterization methods for disordered structures and computational simulation techniques, and using machine learning and other methods to study key scientific problems that are experimentally difficult to solve and restrict the R&D and innovation of amorphous materials, such as the characterization of disordered structures, the correlation between the structure and dynamics of alloy liquids, the micro-mechanism of glass-forming ability, the crystallization and glass transition mechanisms of alloy supercooled liquids, and the deformation mechanism of amorphous alloys, with a series of innovative and internationally influential research achievements. It has published more than 70 papers in internationally renowned academic journals including *Nature Communications* and *Physical Review Letters*, with a total of over 1,500 citations and an H-index of 20. In 2011, it was selected into the Ministry of Education's New Century Excellent Talent Support Program. It also serves as a member of the Amorphous Physics Professional Committee of the Chinese Physical Society.
1. X. Y. Li, H. P. Zhang, S. Lan, D. L. Abernathy, T. Otomo, F. W. Wang, Y. Ren, M. Z. Li*, X.-L. Wang*, "Observation of high-frequency transverse phonons in metallic glasses", Phys. Rev. Lett. 124, 225902 (2020).
2. Y. T. Sun, H. Y. Bai, M. Z. Li*, W. H. Wang*, "Machine learning approach for prediction and understanding of glass-forming ability", J. Phys. Chem. Lett. 8, 3434 (2017).
3. Y. C. Hu, F. X. Li, M. Z. Li*, H. Y. Bai, W. H. Wang*, “Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids", Nature Commun. 6, 8310 (2015).
4. Z. W. Wu, M. Z. Li*, W. H. Wang, K. X. Liu*, “Hidden topological order and its correlation with glass-forming ability in metallic glasses", Nature Commun. 6, 6035 (2015).
5. W. Xu, M. T. Sandor, Y. Yao, H. B. Ke, H. P. Zhang, M. Z. Li, W. H. Wang, L. Liu, Y. Wu,“Evidence of liquid-liquid transition in glass-frming La50Al35Ni15 melt above liquidus temperature", Nature Commun. 6, 7696 (2015).
6. Z. W. Wu, M. Z. Li*, W. H. Wang, K. X. Liu*, Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids", Phys. Rev. B. 88, 054202 (2013).
7. H. L. Peng, M. Z. Li*, W. H. Wang, “Structural signature of plastic deformation in metallic glasses”, Phys. Rev. Lett. 106, 135503 (2011).
8. M. Z. Li*, Y. Han, and J. W. Evans, “Comment on capture zone scaling in island nucleation”, Phys. Rev. Lett. 104, 149601 (2010).
9. H. L. Peng, M. Z. Li*, W. H. Wang, C.-Z. Wang, and K. M. Ho, “Effect of local structures and atomic packing on glass forming ability in CuZr metallic glasses”, Appl. Phys. Lett. 96, 021901 (2010). Highlighted by http://www.nature.com/am/journal/2010/201004/full/am2010115a.html
10. M. Z. Li*, C.-Z. Wang, S. G. Hao, M. Kramer, and K. M. Ho, “Structural heterogeneity and medium-range order in ZrCu metallic glasses”, Phys. Rev. B 80, 184201 (2009).
11. M. Z. Li* and J. W. Evans, “Theoretical analysis of mound slope selection during unstable multilayer growth”, Phys. Rev. Lett. 95, 256101 (2005).
12. E. Cox, M. Z. Li*, P.-W. Chung, C. Ghosh, T. S. Rahman, C. J. Jenks, J. W. Evans, and P. A. Thiel, “Temperature-dependence of island growth shapes in submonolayer deposition of Ag on Ag(111)”, Phys. Rev. B 71, 115414 (2005).
13. M. Z. Li*, M. C. Bartelt, and J. W. Evans, “Geometry-based simulation of submonolayer film growth”, Phys. Rev. B 68, 121401(R) (2003).
14. M. Z. Li, J. F. Wendelken, B.-G. Liu, E. G. Wang, and Z. Zhang, “Decay characteristics of surface mounds with contrasting interlayer mass transport channels”, Phys. Rev. Lett. 86, 2345 (2001).