首页
学院概况
学院简介
院长致辞
领导团队
历史沿革
师资队伍
教职人员
实验室人员
科学研究
研究团队
研究进展
支撑平台
人才培养
本科生教育
研究生教育
物理实验教学中心
教育培训
党团工作
党建工作
团建工作
教师风采
校友寄语
招生录取
本科生招生
研究生招生
国际交流
交流访问
学术会议
最新动态
学术讲座
通知公告
综合新闻
人大主页
邮箱登录
Experimental studies of condensed matter properties
Pang FeiAssociate Professor

Address:Room 715, Technology Building

E-mail:feipang@ruc.edu.cn

Phone:0086-10-82501783

Fax:0086-10-62517887

Webpage:

Education experience

1999.09–2003.06, Bachelor, Department of Physics, Northwestern Polytechnical University

2004.09–2009.12, Doctor, Institute of Physics, Chinese Academy of Sciences



Work experience

2010.08–Present Lecturer, Associate Professor, Department of Physics, Renmin University of China




Research interest

Research on Chemical Vapor Deposition (CVD) Preparation of Two-Dimensional Materials and Scanning Probe Spectroscopy



Talent Cultivation

人才培养

2 master's students have graduated, and 2 doctoral students and 1 master's student are currently being supervised.

I plan to enroll 1 master's/doctoral student every year.


Achievements

1. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers,  Nature Communications, 2023, 14(1), 6320;
2. Controllable CVD Growth of 2D Cr5Te8 Nanosheets with Thickness-Dependent Magnetic Domains, ACS Applied Materials and Interfaces, 2023, 15(21),  26148–26158;
3. Hysteretic electronic phase transitions in correlated charge density wave state of 1T-TaS2,Physical Review B, 2023, 107(19), 195401;

4. Twist angle-dependent work functions in CVD-grown twisted bilayer graphene probed by Kelvin probe force microscopy, Nanoscale, 2023, 15(12), 5825–5833;

5. Advanced atomic force microscopies and their applications in two-dimensional materials: A review,Materials Futures, 2022, 1(3), 032302;

6. Coexisting Ferromagnetic-Antiferromagnetic Phases and Manipulation in a Magnetic Topological Insulator MnBi4Te7, Journal of Physical Chemistry C, 2022, 126(32), 13884–13893;

7. Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes, Journal of Physical Chemistry C, 2022, 126(16), 7184–7192;

8. Epitaxial fabrication of topological Bi-Sb alloy films by surface alloying of Sb nanofilms, Surface Science, 2021, 714, 121921;

9. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film, Frontiers of Physics, 2021, 16(6), 63502;

10. Size-dependent strain-engineered nanostructures in MoS2 monolayer investigated by atomic force microscopy, Nanotechnology, 2021, 32(46), 465703;

11. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy, Frontiers of Physics, 2021, 16(5), 53504;

12. Phase transition-induced superstructures of β-Sn films with atomic-scale thickness, Chinese Physics B, 2021, 30(9), 096804;
13. Strain-Engineered Rippling and Manipulation of Single-Layer WS2 by Atomic Force Microscopy, Journal of Physical Chemistry C, 2021, 125(16),  8696–8703;
14. Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes, ACS Nano, 2020, 14(10), 13834–13840;
15. Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy, Applied Physics Letters, 2020, 117(15), 153102;
16. Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness, Chinese Physics B, 2020, 29(9), 096801;
17. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Frontiers of Physics, 2020, 15(2), 23601;
18. Interfacial water intercalation-induced metal-insulator transition in NbS2 /BN heterostructure, Nanotechnology, 2019, 30(20), 205702