首页
学院概况
学院简介
院长致辞
领导团队
历史沿革
师资队伍
教职人员
实验室人员
科学研究
研究团队
研究进展
支撑平台
人才培养
本科生教育
研究生教育
物理实验教学中心
教育培训
党团工作
党建工作
团建工作
教师风采
校友寄语
招生录取
本科生招生
研究生招生
国际交流
交流访问
学术会议
最新动态
学术讲座
通知公告
综合新闻
人大主页
邮箱登录
Computational Physics Methods and Applications
Tong NingHuaProfessor

Address:Room 305A, Physics Building

E-mail:nhtong@ruc.edu.cn

Phone:0086-10-62515587

Fax:0086-10-62515587

Webpage:http://www.phys.ruc.edu.cn/~tong/

Education experience

1993.09–1997.07, Bachelor, Department of Materials Science, Fudan University

1997.09–2002.07, Doctor, Institute of Physics, Chinese Academy of Sciences


Work experience

2002.08–2003.01, Postdoctoral Fellow, Theoretical Physics III, University of Augsburg

2003.02–2004.10, Humboldt Fellow, Theoretical Physics III, University of Augsburg

2004.11–2005.12, Postdoctoral Fellow, Institute for Theory of Condensed Material, University of Karlsruhe

2006.01–2018.07, Associate Professor, Department of Physics, Renmin University of China

2018.07–Present, Professor, Department of Physics, Renmin University of China



Research interest

1.Theoretical studies of strongly correlated electron systems, including metal-insulator Mott transitions in transition metal oxides, manganite materials with colossal magnetoresistance, high-temperature superconducting cuprate systems, heavy fermion systems, etc. This research involves:


a) Investigating the unique physical mechanisms of the systems.

b) Developing new non-perturbative techniques suitable for strongly correlated systems.


2. Quantum impurity physics, including traditional Kondo physics, quantum dot-related physics, and more general boundary quantum field theories. Using numerical renormalization group (NRG) and perturbative renormalization group techniques, the research primarily focuses on studying relevant quantum critical phenomena and the thermodynamics and dynamics of impurities.


Research projects

1. Development of Dynamical Mean-Field Theory and Its Applications to Strongly Correlated Electron Systems, General Program of the National Natural Science Foundation of China

2. Development of Wilson Numerical Renormalization Group and Its Applications to Quantum Impurity Models, New Century Excellent Talents Support Program, Ministry of Education

3. Subproject of Research on Quantum Order Phenomena and Their Multifield Modulation: Development of Computational Methods and Their Applications in Quantum Order Prediction, Ministry of Science and Technology


Achievements

1. Ning-Hua Tong, Fu-Cho Pu, “Fine structure of phase separation in double-exchange systems”, Phys. Rev. B 62, 9425 (2000). (强关联电子系统中的电子相分离)

2. Ning-Hua Tong, Shun-Qing Shen, and Fu-Cho Pu, “Mott-Hubbard transition in infinite dimensions”, Phys. Rev. B 64, 235109 (2001). (Mott金属-绝缘体相变的细节)

3. Ralf Bulla, Ning-Hua Tong, and Matthias Vojta, “Numerical Renormalization Group for Bosonic Systems and Application to the Sub-Ohmic Spin-Boson Model”, Phys. Rev. Lett. 91, 170601 (2003). (自旋-玻色子模型中的量子相变及其普适类)

4. Robert Zitzler, Ning-Hua Tong, Thomas Pruschke, and Ralf Bulla, “Phase Diagram of the Frustrated Hubbard Model”, Phys. Rev. Lett. 93, 016406 (2004). (具有阻挫的电子系统中的Mott金属-绝缘体相变)

5. Ralf Bulla, Hyun-Jung Lee, Ning-Hua Tong, and Matthias Vojta, “Numerical renormalization Group for Quantum Impurities in a Bosonic Bath”, Phys. Rev. B 71, 045122 (2005). (玻色子数值重整化群方法的发展)

6. Matthias Vojta, Ning-Hua Tong, Ralf Bulla, “Quantum Phase Transitions in the sub-Ohmic Spin-Boson Model: Failure of the Quantum-Classical Mapping”, Phys. Rev. Lett. 94, 070604 (2005);(Erratum) Phys. Rev. Lett. 102, 249904 (2009). (亚欧姆自旋-玻色子模型中量子相变的普适类问题)

7. Ning-Hua Tong, “Extended Variational Cluster Approximation for Correlated Systems”, Phys. Rev. B 72, 115104 (2005). (对变分团簇近似的扩展,一般的DMFT框架的建立)

8. Ning-Hua Tong and Matthias Vojta, “Signatures of a Noise-Induced Quantum Phase Transition in a Mesoscopic Metal Ring”, Phys. Rev. Lett. 97, 016802 (2006). (介观金属环中的量子相变)

9. Wen-Jun Hu and Ning-Hua Tong, “Dynamical Mean Field Theory for the Bose-Hubbard Model”, Phys. Rev. B 80, 245110 (2009). (相互作用玻色子的动力学平均场理论)

10. Wei Wu,Yao-Hua Chen, Hong-Shuai Tao, Ning-Hua Tong, and Wu-Ming Liu, “Interacting Dirac Fermions on Honeycomb Lattice”, Phys. Rev. B 82, 245102 (2010). (六角晶格Hubbard模型金属-绝缘体相变)

11. Zhen-Hua Li, Ning-Hua Tong, Jian-Hua Wei, Dong Hou, Xiao Zheng, Jie Hu, and Yi-Jing Yan, “Hierarchical Liouville-Space Approach for Accurate and Universal Characterization of Quantum Impurity Systems”, Phys. Rev. Lett. 109, 266403 (2012). (HEOM方法对Anderson杂质模型的应用)

12. Yong-Zhi Ren, Ning-Hua Tong, and Xin-Cheng Xie, “Cluster Mean-Field Theory Study of J1-J2 Heisenberg Model on a Square Lattice”, J. Phys.: Condens. Matter 26, 115601 (2014). (J1-J2海森堡模型的团簇平均场理论研究)

13. Dong Hou, Ru-lin Wang, Xiao Zheng, Ning-Hua Tong, Jian-Hua Wei, and Yi-Jing Yan, “Hierarchical Equations of Motion for an Impurity Solver in Dynamical Mean-Feld Theory”, Phys. Rev. B 90, 045141 (2014). (HEOM方法结合DMFT的应用研究)

14. Sheng Bi and Ning-Hua Tong, “Monte Carlo Algorithm for Free Energy Calculation”, Phys. Rev. E 92, 013310 (2015). (一种计算经典系统自由能的Metropolis算法)

15. Tie-Feng Fang, Ning-Hua Tong, Zhan Cao, Qing-Feng Sun, and Hong-Gang Luo, “Spin Susceptibility of Anderson Impurities in Arbitrary Conduction Bands”, Phys. Rev. B 92, 155129 (2015). (对量子杂质模型的自旋磁化率NRG计算的深入理解)

16. Ning-Hua Tong, “Equation-of-Motion Expansion of Double-Time Green’s Functions”, Phys. Rev. B 92, 165126 (2015). (基于运动方程的双时格林函数级数展开理论)


 

17. Da-Chuan Zheng and Ning-Hua Tong, “Impurity-Induced Environmental Quantum Phase Transitions in the Quadratic-Coupling Spin-Boson Model”, Phys. Rev. B 98, 115131 (2018). (二次耦合的自旋玻色子模型中环境诱导的量子相变)

 

18. Peng Fan, Ke Yang, Han-Kou Ma, and Ning-Hua Tong, “Projective Truncation Approximation of Equations of Motion of Two-Time Green’s Functions”, Phys. Rev. B 97, 165140 (2018). (双时格林函数运动方程的投影截断近似)

 

19. Sheng Bi, Li Huang, and Ning-Hua Tong, “Natural Orbital-Based Lanczos Method for Anderson Impurity Models”, Comp. Phys. Comm. 235, 196 (2019). (Anderson杂质模型的自然轨道Lanczos算法)

 

20. Ke Yang and Ning-Hua Tong, “Dynamical Spectral Function from numerical renormalization group: A full excitation approach” Phys. Rev. B 102, 085125 (2020).  (量子杂质模型局域谱函数的NRG全激发算法)