Abstract
A reduced dimensionality of multiferroic materials is highly desired for device miniaturization, but the coexistence of ferroelectricity and magnetism at the two-dimensional limit is yet to be conclusively demonstrated. Here, we used a NbSe2 substrate to break both the C3 rotational and inversion symmetries in monolayer VCl3 and, thus, introduced exceptional in-plane ferroelectricity into a two-dimensional magnet. Scanning tunneling spectroscopy directly visualized ferroelectric domains and manipulated their domain boundaries in monolayer VCl3, where coexisting antiferromagnetic order with canted magnetic moments was verified by vibrating sample magnetometer measurements. Our density functional theory calculations highlight the crucial role that highly directional interfacial Cl-Se interactions play in breaking the symmetries and, thus, in introducing in-plane ferroelectricity, which was further verified by examining an ML-VCl3/graphene sample. Our work demonstrates an approach to manipulate the ferroelectric states in monolayered magnets through van der Waals interfacial interactions.

论文链接:Evidence of Ferroelectricity in an Antiferromagnetic Vanadium Trichloride Monolayer| Science Advances